

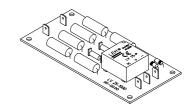
Voltage Transducer LV 25-1000/SP1

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

$egin{array}{l} oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{array}$	Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance		1000 0 ± 1 8 R _{M min}	500 R _{Mmax}	V V mA
	with ± 12 V with ± 15 V	@ $\pm 1000 \text{ V}_{\text{max}}$ @ $\pm 1500 \text{ V}_{\text{max}}$ @ $\pm 1000 \text{ V}_{\text{max}}$	30 30 100	200 100 320	Ω Ω
	WILL TO V	@ ±1500 V _{max}	100	180	Ω
I _{SN} K _N V _C I _C V _d	Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isolation test 1, 50 Hz, 1 mn		± 12	′ / 25 m <i>F</i> 15 15V)+ I _s	mA V mA kV

Accuracy - Dynamic performance data


X _G	Overall Accuracy @ V_{PN} , $T_A = 25^{\circ}$ C Linearity		± 0.8 < 0.2		% %
I _o	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Thermal drift of $\mathbf{I}_{\rm O}$	- 30°C + 25°C + 25°C + 70°C	Typ ± 0.10 ± 0.10	Max ± 0.15 ± 0.50 ± 0.40	mA mA
t _r	Response time @ 90 % of $\mathbf{V}_{_{\mathrm{PN}}}$		40		μs

General data

T_A	Ambient operating temperature	- 30 + 70	°C	
T _s	Ambient storage temperature	- 40 + 85	°C	
N	Turns ratio	3100 : 1000		
Р	Total primary power loss	8	W	
$R_{_1}$	Primary resistance @ T _A = 25°C	125	$k\Omega$	
Rs	Secondary coil resistance @ T _A = 70°C	110	Ω	
m	Mass	60	g	
	Standards	EN 50178: 19	EN 50178: 1997	

Note: 1) Between primary and secondary.

$V_{pN} = 1000 \text{ V}$

Features

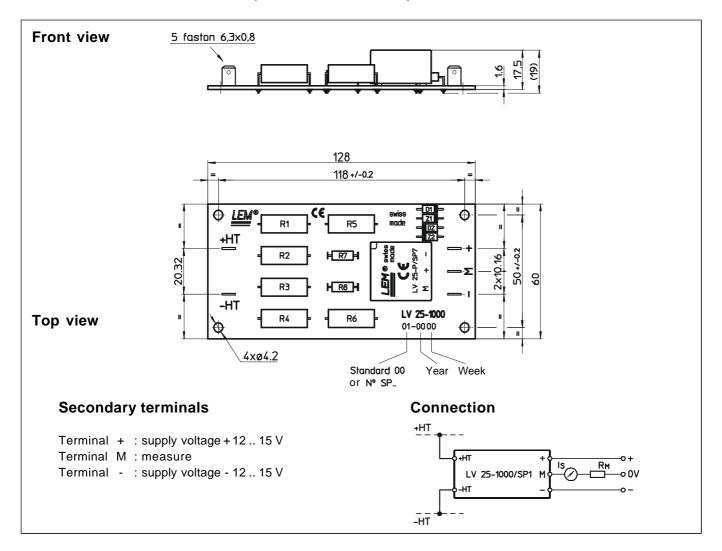
- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Special features

- T₀ = 30 .. + 70 °C
- Coated
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

061103/2

Dimensions LV 25-1000/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.3 mm

• Fastening 4 holes Ø 4.3 mm

• Connection of primary Faston 6.3 x 0.8 mm

• Connection of secondary Faston 6.3 x 0.8 mm

Remarks

- \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.